Programmable Controller
MELSECFF

\section*{FX3u-2HC \\ USER'S MANUAL \\ FX3u \\ | Manual Number | JY997D36701 |
| :--- | :--- |
| Revision | D |
| Date | May 2018 |}

This manual describes the part names, dimensions, mounting, wiring, and seecifications of the product. Before use, read this manual and the manuals of al relevant products fully to acquire proficiency in handling and operating the
product. Make sure to learn all the product information, safety information, and Srecautions.
ore this manual in a safe place so that it can be taken out and read whenever necessary. Always forward it to the end user
The company and product names described in this manual are registered respective companie Effective May 2018
subject to change without notice.
© 2009 Mitsubishi Electric Corporation
Safety Precaution (Read these precautions before use.
his manual classifies the safety precautions into two categories: \triangle WARNING and $\triangle C A U T I O N$

\triangle WARNING	Indicates that incorrect handling may cause hazardous conditions, resulting in death or severe injury.
\triangle CAUTION	Indicates that incorrect handling may cause hazardous conditions, resulting in medium or slight personal injury or physical damage.

Depending on the circumstances, procedures indicated by \triangle CAUTION may also cause severe injury.
mstances, procedures indicated
Associated Manuals

Manual name	Manual No.	Description
FX3U Series User's Manual - Hardware Edition	JY997D16501 MODELCODE: 09R516	Explains the FX3U Series PLC specifications for $/ / 0$, wiring, installation, and maintenance.
FX3UC Series User's Manual - Hardware Edition	$\begin{gathered} \text { JY997D28701 } \\ \text { MODELCODE: } \\ 09 R 519 \end{gathered}$	Explains the FX3UC Series PLC specifications for $/ / 0$, wiring, installation, and maintenance
FX3S/FX3G/FX3GC/ FX3U/FX3UC Series Programming Manual - Basic \& Applied nstruction Edition	JY997D16601 $09 R 517$	Describes FX3S/FX3G/FX3GC/FX3U/ FX3UC Series PLC programming for basic/applied instructions and devices.
MELSEC iQ-F FX5U User's Manual (Hardware)	JY997D55301 MODEL CODE: 09R536	Explains the FX5U PLC specifications for $1 / 0$, wiring, installation, and maintenance
MELSEC IQ-F FX5UC User's Manual (Hardware)	JY997D61401 MODEL CODE: 09R558	Explains the FX5UC PLC specifications for $1 / 0$, wiring, installation, and maintenance

How to obtain manuals
documents, consult with the Mitsubishi Electric who you purchased your product.
Certification of UL, cUL standards
The following product has UL and cUL certification.
Models: MELSEC FX3U series manufactured
om December 1st 2009 series manu

Compliance with EC directive (CE Marking)

This note does not guarantee that an entire mechanical module produced accordance with the contents of this note will comply with the following standards.
Compliance to EMC directive and LVD directive for the entire mechanical Compliance to EMC directive and LVD directive for the entire mechanical module
should be hecked by the user / manufacturer. For more details please contact the
local Mitsubishi Electric sales site.
Requirement for Compliance with EMC directive
The following products have shown compliance through direct testing (of the identified
standards below) and design analysis (through the creation of a te stand ards below) and and alysis (through the creation of a technical construction sed as directed by the appropriate doccumentation.
Attention
This produc
.
Type:
Models:
Programmable Controller (Open Type Equipment)
MELSEC FX3U Series manufactured

Standard	emark
EN61131-2:2007 Programmable controllers Equipment requirements and tests	Compliance with all relevant aspects of the standard EMI - Radiated Emission - Conducted Emission EMS - Radiated electromagnetic field - Fast transient burst - Electrostatic discharge - High-energy surge - Voltage drops and interruptions - Conducted RF - Power frequency magnetic field

Caution for EC Directive

- Installation in Enclosure Programmable controllers are open-type devices that must be installed and used within conductive control cabinets. Please use the programmable controller r while
installed within a conductive shied ded control cabinet. Please secure the cabinet installed within a conductive shielded control cabinet. Please secure the cabinet
door to the control cabinet (for conduction). Installation within a control cabinet door to the control cabinet (for conduction). Installation within a control cabinet
greatly affects the safety of the system and aids in shielding noise from the programmable controller.

1. Outline
1.1 Outline

The hardware high-speed counter block is a 2-channel high-speed counter. It is a
special function block for the FXXUU FXXUCIFXSU/FX5UC PLC. 1.2 Major Features of the $\mathrm{FX}_{3 \mathrm{U}}-2 \mathrm{HC}$

- Differential-Line-Driver (AM26C31 or equivalent) and open collector output - encoders are available for the $\mathrm{FX} \times \mathrm{U}-2 \mathrm{HC}$.
- The $\mathrm{FX} \mathrm{X} U-\mathrm{HC}$ has two outputs per channel. When the counter value coincides with Th output compare value, the appropriate output is set ON. The output transisistors are individually isolated to allow either sink or or source connection methods.
- Various counter modes, such as 1 -phase or 2--phase, 16 -ibit or 32 -bit modes, can be
selected using commands in the sequence rogram. Allow the FX3U-2HC unit to selected using commands in the sequence
run only after setting these mode parameters.
1.3 Incorporated Items
1.3 Incorporated ltems
Verify that the following product and items are included in the package

Included Items	
FX3U-2HC	1 Unit
Special unit/block No. label	1 Sheet
Dust proof protection sheet	1 Sheet
Manuals JJapanese version]	1 manual
Mars	

Manuals [English version] (This manual)
1.4 External Dimensions, Part Names, and Terminal Layout

No.	Name		
[1]	Direct mounting hole: 2 holes of $\phi 4.5$ ($0.18^{\prime \prime}$) (mounting screw: M4 screw) Used when attaching $\mathrm{FX} 3 \mathrm{U}-2 \mathrm{HC}$ directly.		
[2]	Extension cable (PLC side) Used to connect this special function block to the FX3U/FX3UC main unit or an extension block.		
[3]	CH1 connector		
[4]	CH2 connector		
[5]	Status LED (the upper side: CH 1 , the lower side: CH 2)		
	POWER	Power LED	ON when the 5 V power supply is normally supplied from the PLC.
	UP (Red)	Up count LED	The respective LED is ON according to up/down count direction of the counter.
	DOWN (Red)	Down count LED	
	ФA (Red)	A phase input LED	The respective LED is ON (flicker)according to ON/OFF of ΦA and ΦBinput.
	¢B (Red)	B phase input LED	
	DIS (Red)	DISABLE input LED	The respective LED is ON/OFFaccording to ON/OFF of PRESET andDISABLE input.
	PRE (Red)	PRESET input LED	
	YH1 (Red)	YH1 output LED	The respective LED is ON/OFFaccording to status of YH1 and YH2output.
	YH2 (Red)	YH2 output LED	
[6]	Top cover		
[7]	Extension connector (Extension side) Used to connect a FX3U extension block to the right of this special function block. Remove top cover for connecting.		
[8]	DIN rail mounting hook		
[9]	DIN rail mounting groove (DIN rail: DIN46277, 35 mm ($1.38{ }^{\prime \prime}$) width)		

Phase A	CH1			CH2	
	A24+	${ }^{\text {A12+ }}$		${ }^{\text {A24+ }}$	${ }^{\text {A12+ }}$
	${ }^{\text {A5 }}$	A-		${ }^{\text {A } 5+}$	A-
	-	-		-	-
Phase B input	B24+	B12+		B24+	B12+
	${ }^{\text {B5+ }}$	B-		B5+	B-
	-	-		-	-
PRESET input	P24+	P12+		P24+	P12+
	P5+	P-		P5+	P-
	-	-		-	-
	-	\cdot	$1{ }^{\text {Notch }}$	-	-
$\underset{\text { DISABLE }}{\text { input }}$	XD24	XD5		XD24	XD5
	-	COMD		-	COMD
	.	\bigcirc		-	-
YH1 output	YH1+	YH1-		YH1+	YH1-
	-	-		-	-
YH2 output	YH2+	YH2-		YH2+	YH2-
	-	-		-	\bullet
	-	-		-	-
	-	-		-	-
	-	-		-	-

2. Installation, Connect to the PLC

INSTALLATION PRECAUTIONS	¢ WARNING
- Make sure to cut off all phases of the power supply externally before attempting installation or wiring work. Failure to do so may cause electric shock or damage to the product.	
installation PRECAUTIONS	\CAUTION
- Use the produ unit manual. Never use the corrosive gas or expose it to If the produc deterioration or	neric environment specifications described in PLC main as with excessive dust, oily smoke, conductive dusts $\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}$, or NO_{2}), flammable gas, vibration or impacts ure, condensation, or rain and wind. uch conditions, electric shock, fire, malfunctions occur.

$\underset{\substack{\text { Mstalatarion } \\ \text { PRECAUTIONS }}}{ }$
 ©CAUTION

- Do not touch the conductive parts of the product directly.
Doing so may cause device failures or malfunctions.
- Install the product on a flat surface.

If the mounting surface is rough, undue force will be applied to the PC board,
thereby causing nonconformities.
thereby causing nonconformites.
When drililing screw holes or wiring, make sure cutting or wire deb
not enter the ventilation slits.
Failure to do so may cause fire, equipment failures or malfunctions.
Be sure to remove the dust proof sheet from the PLC's ventilation port when
Failure to do so may cause fire, equipment failures or malfunctions.
Connect extension cables securely to their designated connectors.
Loose connections may cause malfunctions.
The Mounting for following method

- DIN rail mounting
- Direct mounting (mounting screw: M4 screw)
\rightarrow Refer to the FX 3 S Series User's Mater to the following manuals. \rightarrow Refer to the FX3U Series USer's Manual - - Hardware Edition $\xrightarrow{\rightarrow \text { Refer to the MELSEC iQ-F FX5U User's Manual (Hardware) }}$

2.1.1 DIN Rail Mounting

The product can be mounted on a DIN rail
(DIN46277 $35 \mathrm{~mm}\left(138^{\prime \prime}\right)$ width) The product can be mounted on
(DIN $166277,35 \mathrm{~mm}$ ($1.38^{\prime \prime}$) width).

1) Fit the upper edge of the DIN rail mounting 2) Prosess (tige product against the DIN

An interval space of 1 to $2 \mathrm{~mm}(0.04$ to to
$0.08^{\prime \prime}$) between each unit is necessary.

2.1.2 Direct Mounting (mounting screw: M4 screw)

The product can be installed directly with screws.
The product can be installed directly with screws.
Refer to the External Dimensions (section 1.4) for the product's mounting hole pitch information.
An interval space between each unit of 1 to $2 \mathrm{~mm}(0.04$ " to 0.08 ") is necessary. 2.2 Connection to the PLC

A maximum of eight ${ }^{1+2} \mathrm{FX} 3 \mathrm{U}-2 \mathrm{HC}(\mathrm{s})$ are connectable with the main unit or the A maximum of eight ${ }^{\text {EX } 3 U-2 H C(s) ~ a r e ~ c o n n e c t a b l e ~ w i t h ~ t h e ~ m a i n ~ u n i t ~ o r ~ t h e ~}$
right side of the powered extension unitblock. A unit number of No. 0 to No .7 is right side of the powered extension unitblock. A unit number of No. 0 to No. 7 is
assigned based on the order in which special function units/blocks are attached to the main unit.
For connection to an FX3UC Series PLC or FX2NC Series PLC extension block, an
FX2NC-CNV-IF or FX3UC-1PS-5V is required.
For connection to an FX5U or FX5UC PLC, an FX5-CNV-BUS or FX5-CNV-BUS is required.

Up to seven special function units/blocks in total can be connected to the
FX3UC-32MT-LT(-2) PLC. Unit numbers assigned to special function units
blocks begins with No.1.
*2 Up to two special function units/blocks in total can be connected to the
FX5U or FX5UC PLC. Unit numbers assigned to special function units/ X5U or FX5UC PLC.
For further information on instalation
\rightarrow Refer to the FX3U Series User's Manual - Hardware Edition
\rightarrow Refer to the FXXuC Series User's Manal - Hardwal \rightarrow Refer to the FX3UC Series User's Manual - Hardware Edition \rightarrow Refer to the MELSEC iQ-F FXSUC User's Manual (Hardware)
3. Wiring (Power supply and analog input)

WIRING
PRECAUTIONS
\triangle WARNING

- Make sure to cut off all phases of the power supply externally before attempting installation or wiring work.
Failure to do so may cause electric shock or damage to the product.
When drilling screw holes or wiring, make sure cutting or wire debris does
not enter the ventilation slits.
not enter the ventilation silis.
Failure to do so may cause fire, equipment failures or malfunctions.

WIRING PRECAUTIONS	\CAUTION
- Make sure to observe the following precautions in order to prevent any damage to the machinery or accidents due to abnormal data written to the PLC under the influence of noise:	
1) Do not bundle the main circuit line together with or lay it close to the main circuit, high-voltage line or load line. Otherwise, noise disturbance and/or surge induction are likely to take place. As a guideline, lay the control line at least 100 mm (3.94 ") or more away from the main circuit or high-voltage lines.	
2) Ground the shield wire or shield of the shielded cable at two points; on the PLC and the device on other end. However, do not use common grounding with heavy electrical systems.	

3.1 Connection to input/output connector

$\xrightarrow{\text { The input and output connectors conform to the MLL-C-83503. }}$ 1) Compliant connectors (commercially available connectors) Use a 40 -pin (1 -key) socket connector conforming to MLL-C-83503. Se a 4 -pin (1 -key) socket connector conforming to MLL-C-83503.
Confirm in advance that the connectors do not interfere with other parts including connector covers.
2) Connectors for user-made inputtoutput cables (avaiable from Mitsubishi)
Users should provide electric wires and a pressure bonding tool Users should provide electric wires and a pressure bonding tool.

Model name and composition of input/ output connector		$\begin{aligned} & \text { Applicable electric wire } \\ & \text { (UL-1061 are recommended) } \\ & \text { and tool } \end{aligned}$	
Our model name	$\begin{aligned} & \text { Details of part } \\ & \text { (made by DDK Ltd.) } \end{aligned}$	$\begin{aligned} & \text { Electric } \\ & \text { wire } \\ & \text { size } \end{aligned}$	Pressure bonding tool (made by DDK Ltd.)
FX-I/O-CON2-S for bulk wire (2-piece set)	Housing:HU-400S2-001 Solderless contact: HU-411S	$\left\|\begin{array}{c} \text { AWG22 } \\ \left(0.3 \mathrm{~mm}^{2}\right) \end{array}\right\|$	357J-5538
$\begin{aligned} & \hline \text { FX-I/O-CON2-SA } \\ & \text { for bulk wire } \\ & \text { (2-piece set) } \end{aligned}$	Housing:HU-400S2-001 Solderless contact: HU-411SA	$\begin{gathered} \text { AWG20 } \\ \left(0.5 \mathrm{~mm}^{2}\right) \end{gathered}$	357J-13963

. 2 Wiring
Note:
Make sure to properly wire in accordance with the encoder output specifications.
Make sure to property wire in accordance with the encoder output

1. Drive power supply of the en

Use either $24 V D C, 12 V$ DC, or $5 V D C$ according to the encoder type.
When conenecting the A phase, the B phase, and the Z phase to the
FX X Uu-2HC, connect

2. This wiring is unnecessary when not using the PRESET function or the
DISABLE function.

3.2.2 PNP output enc

. Drive power supply of the encoder

When using $24 V$ VC for PRESET or DISABLE signals, connect to the 24
2. Wiring of the B phase is the same as that of the A phase.
*3. This wiring is unnecessary when not using the PRESET function or the
DSABE function.
3.2.3 Differential-Line-Driver output encoders

When applying the Differential-Line-Driver encoder (AM26C31 or equivalent) to the
FX3u-2HC, connect the encoder output with the 5 V DC terminal as shown in the

${ }^{*} 1$. Wiring of the B phase is the same as that of the A phase
*2. This wiring is unnecessary when not using the PRESET function or the

3.2.4 $\mathrm{YH} 1, \mathrm{YH} 2$ output wiring [Sink wiring]

Caution
aution
A protection fuse should be inserted at the output.
Use a load power supply capacity that is at least 2 times larger than the total rated fuse capacity.
3.2.5 YH1, YH2 output wiring [Source wiring]

Outtut load
driving power,
5

Caution
A protection fuse should be inserted at the output
Use a load power supply capacity that is at least 2 times larger than the total rated fuse capacity.
Grounding should be performed as stated below.

- The grounding resistance should be 100Ω or less
- Independent grounding should be performed for best results.
When independent grounding is not performed perforn

When independent grounding is not performed, perform "shared grounding"
of the following figure. \rightarrow For details, refer to the FX3U Series User's Manual - Hardware Edition \rightarrow For details, refer to the FXXUC Series User's Manual - Hardware Edition.
\rightarrow For details, refer to the MELSEC
\rightarrow For details, refer to the MELSEC iQ-F FXSUUC User's Marual (Hardware).
 Independent grounding
Best condition $\begin{gathered}\text { Shares grounding } \\ \text { Good condition }\end{gathered} \quad \begin{gathered}\text { Common grounding } \\ \text { Not allowed }\end{gathered}$

- The grounding wire size should be AWG $22-20\left(0.3-0.5 \mathrm{~mm}^{2}\right)$,

The grounding point ssould be close to the PLC, and all grounding wires
should be as short as possible.
Specifications

| DESIGN |
| :--- | :--- |
| PRECAUTIONS |$\quad \triangle$ WARNING

- Make sure to have the following safety circuits outside of the PLC to ensure safe
system operation even during external power supply problems or PLC failure.
Otherwise, malfunctions may cause serious accidents.

1) Most importantly, have the following: an emergency stop circuit, a protection
circuit, an interlock circuit for opposite movements (such as normal vs. reverse rotation), and an interlock circuit (to prevent damage to the equipment at the upper and lower positioning limits).
2) Note that when the PLC CPU detects an error, such as a watchdog timer error, during self-diagnosis, all outputs are turned off. Also, when an error that
cannot be detected by the PLC CPU occurs in an inputloutput control block, output control may be disabled.
External circuits and mechanisms should be designed to ensure safe
Note that when an error occurs in a
output could be held either on or off. For output signals that may lead to serious accidents, external circuits and mechanisms should be designed to ensure safe machinery operation in such

DESIGN

\triangle CAUTION

- Do not bundle the control line together with or lay it close to the main circuit of ower line. As a guideline, lay the co
away from the main circuit or power line.
Noise may cause malfunctions.
- Install module so that excessive force will not be applied to $/ / 0$ connectors.
Failure to do so may result in wire damael

4.1 General Specifications

The general specifications are equivalent to the PLC main unit.
(For general specifications, refer to the manual of the PLC main unit.)
Cuation
a
When a dielectric withstand tes
this product and the PLC unit.

4.2 Power Supply Specifications

Item	Specifications
Units driving power	5V DC, 245mA Internal powers supply from main unit or extension power supply unit)
Allowable instantaneous power failure time	Operation can be continued upon occurrence of instantaneous power failure for 1 1 ms or less.

4.3 Performance Specifications

Item		Specification		
$\underset{\substack{\text { Input } \\ \text { signal }}}{ }$	Signal level (Selected by termina tion)	Phase A, Phase B PRES	$\begin{aligned} & {\left[\begin{array}{l} \mathrm{A} 24+],[\mathrm{B} 24+], \\ {[\mathrm{P} 24+]} \end{array},\right.} \end{aligned}$	$\begin{aligned} & 24 \mathrm{VDC} \mathrm{DC} \pm 10 \%, \\ & 8 \mathrm{~mA} \text { o less }, \end{aligned}$ 8mA or less
			$\begin{array}{\|c\|} \hline[\mathrm{A} 12+][\mathrm{B} 12+], \\ {[\mathrm{P} 12+]} \end{array}$	$\begin{aligned} & \hline 12 \mathrm{~V} \mathrm{DC} \pm 10 \%, \\ & 8 \mathrm{~mA} \text { or less } \end{aligned}$
			$\begin{aligned} & {\left[\begin{array}{l} \mathrm{A} 5++][\mathrm{B} 5+\mathrm{]}, \\ {[\mathrm{P} 5+]} \end{array},\right.} \end{aligned}$	$\begin{aligned} & \text { 3.0V to } 5.5 \mathrm{~V} \text { DC, }, \\ & \text { 12.5mA or less } \end{aligned}$
		disable	[XD24]	10.8 V to 26.4 V DC, 15 mA or less
			[XD5]	5 V DC $\pm 10 \%$, 8mA or less
	MAX. frequency	$\begin{aligned} & \text { 1-phase } \\ & \text { input } \end{aligned}$	1 input	200 kHz
			2 input	
		$\begin{aligned} & \text { 2-phase } \\ & \text { input } \end{aligned}$	1 edge count	
			2 edge count	100kHz
			4 edge count	50 kHz
	Pulse shape			
Counting specification ficatio	Format	Automatic UP/DOWN However, when on 1-phase 1 -input mode, UP/ DOWN is determined by the following. - Hardware UP/DOWN: Up/down count is decided by OFF/ON of the A-phase input terminal. - Software UP/DOWN: Up/down count is decided by the current value (K0/K1) of BFM \#1, \#41.		
	Range	When 32-bit is specified: $-2,147,483,648$ to $+2,147,483,647$ When 16-bit is specified: 0 to 65,535 (upper limit is set up by BFM \#3, \#2, \#43, \#42.)		
	Comparison Type	When the present value and the comparison set value of the counter are equal, the comparison output is set (ON) within 30μ s and is cleared (OFF) within $100 \mu \mathrm{~s}$ by the reset command.		
Output signal	Types of outputs			
	Output capacity	$5 \mathrm{~V} \sim 24 \mathrm{~V}$ DC, 0.5 A		
1/0 occupation		8 points (can be either inputs or outputs)		

4.4 Applicable PLC

Model name	Applicability
FX3U Series PLC	Ver. 2.20 and later ${ }^{\text {² }}$
FX3UC Series PLC* ${ }^{\text {1 }}$	Ver. 2.20 and later ${ }^{* 3}$
FX5U PLC* ${ }^{\text {2 }}$	From first production
FX5UC PLC'2	From first production

*1 An FX2NC-CNV-IF or FX3UC-1PS-5V is necessary to connect the FX3U-
2 HC with the FX3UC PLC.
${ }^{2}$.
*2 An FX5-CNV-BUS or FX5-CNV-BUSC is necessary to connect the FX3U-
2HC with the F F5UUFKXUC PLC.

* 3 The version number can be checked by reading the last three digits of
*3 The version number can be checked by reading the last three digits of
device $\mathrm{D} 8001 / \mathrm{D} 8101$.

5. Buffer Memories (BFM)

5.1 Buffer memory Lis

1) When writing to BFM \#0 (CH1 counter mode), BFM \#1 to \#27 and \#29 biti to
6 will be initialized. When writing to BFM $\# 40$ (CH2 counter mode). BFM $\# 41$ o \#67 and \#29 bit10 to 15 will be initialized.
When setting the counter mode, use a ToP (pulsed) instruction, or M8002 cannot be used.)
2) Read/Write of 16 bit data

Hen using a positive value between $K 32,768$ and $K 65,535$ with 16 bit counters, ${ }^{\text {readmites }}$ of data, such as the current value, ring length, preset
data, YH1 YH compare value, maximum count value and the minimum count value should use the 32 -bit forms of FROM/TO instructions ((D) FROM, (D) TO).
Read/write of 32 bi
The usage of a 32 -bit FROM/TO instruction is recommended
ted to be considered 16 -bit FROMITO instruction is used, the following cases

- If the writing ordered is low word first and then high word, the 32 bit data will be written normally. Data becomes valid after both low and high words are
written.

BFM \#		Description		Default	$\begin{gathered} \text { BFM } \\ \text { Access } \end{gathered}$
CH1	CH2				
BFM \#0	BFM \#40	Counter mode(Setting range: K0 to K11)		ко	RW
BFM \#1	BFM \#41	$\begin{array}{\|l\|} \hline \text { DOWN/UP command } \\ \text { (1-phase 1-input mode [S/W UP/ } \\ \text { DOWN] only) } \end{array}$		ко	R/W
BFM \#2	BFM \#42	Ring length	Lower		RW
BFM \#3	BFM \#43		Upper	K6553	RW
BFM \#4	BFM \#44	Command		ко	RW
$\begin{aligned} & \mathrm{BFM} \text { \#5 } \\ & \sim \\ & \text { \#\#9 } \end{aligned}$	$\begin{array}{\|c} \substack{\text { BFM \# \# } \\ \hline} \end{array}$	Not used		-	-
BFM \#10	BFM \#50	Preset data	Lower	K0	RW
BFM \#11	BFM \#51		Upper		R/W
BFM \#12	BFM \#52	YH1 compare value	Lower	K32767	RNW
BFM \#13	BFM \#53		Upper		RNW
BFM \#14	BFM \#54	YH2 compare value	Lower	K32767	RNW
BFM \#15	BFM \#55		Upper		RN
$\begin{aligned} & \text { BFM\#16 } \\ & \sim \neq 19 \end{aligned}$	$\left\lvert\, \begin{aligned} & \left\lvert\, \begin{array}{l} \text { BFM \#56 } \\ \sim \# 59 \end{array}\right. \end{aligned}\right.$	Not used		-	-
BFM \#20	BFM \#60	Counter current value	Lower	ко	RW
BFM \#21	BFM \#61		Upper		RW
BFM \#22	BFM \#62	Maximum count value	Lower	ко	RW
BFM \#23	BFM \#63		Upper		RW
BFM \#24	BFM \#64	Minimum count value	Lower	ко	RW
BFM \#25	BFM \#65		Upper		RW
BFM \#26	BFM \#66	Compare results		-	R
BFM \#27	BFM \#67	Terminal status		-	R
BFM \#28		Not used		-	-
BFM \#29		Error status		-	R
BFM \#30		Model identification code: K4020		K4020	R
$\frac{\text { BFM \#31 ~ } 39}{\text { BFM \#68 ~ } 32767}$		Not used		-	-
		Not used		-	

2 Details of buffer memories

21 Conter mele [BEM \#O (CH1), $\# 40$ (CH2)]

the counter mode is shown in the upper right table. (Default value: k0)
When writing to BFM \#0 (CH1 counter mode), BFM \#1 to \#27 and \#29 bit1 to 6 will
be initiaized. When writing to BFM $\# 40$ (CH2 counter mode), BFM $\# 41$ to \#67 and be initialized. When writing to BFM \#40 (CH2 counter mode), BFM $\# 41$ to \#67 and 29 inito to 15 will be infiuilized. Pease perform
the setting of the counter mode (BFM $\# 0, \# 40$). When setting the counter mode, use a TOP (pulsed) instruction, or M8002 (initial
pulse) to drive the TO instruction. (The continuous operation type cannot be used.)

Count modes		32 bits	16 bits	Reference
2-phase input (phase difference pulse)	1 edge count	ко	K1	1), 2)
	2 edge count	K2	K3	1), 3)
	4 edge count	K4	K5	1), 4)
1-phase 2-input (add/subtract pulse)		K6	K7	1), 5)
$\begin{aligned} & \text { 1-phase } \\ & \text { 1-input } \end{aligned}$	Hardware UPIDOWN	K8	K9	1), 6)
	Software UP/DOWN	K10	K11	1), 7)

1) $16 / 32$-bit counter modes

a) 32 -bit counter modes

A 32 -bit binary counter which executes UP limit value counting will change from the lowe upper limit value to the lower limit value when overflow occurs. Both the upper and when overflow occurrs. Both the upper and
lower limit values are fixed values. the upper
limit value is +2.147 .483 .647 , and the lower limit value is $+2,147,483,647$, and the lowe
16 -bit counter modes
be-bit Counter modes
Modes. $\mathrm{K} 1, \mathrm{~K} 3, \mathrm{~K} 5, \mathrm{~K} 7$, K9, K11
A 16-bit hinary
A 16 -bit binary counter hanclles only positive
values from 0 to 65,535 . Changes to zero values from o or limit value or to the upper
from the upper
limit value from zero when overflow occurs;
Init value trom zero when overflow occurs
the upper limit italue is determined by BFM
and \#2 (CH1), \#43 and \#42 (CH2)
Phase A
Phase $\mathrm{B} \longrightarrow$ $\begin{array}{ll}\text { Phase B input OFF } \rightarrow & \begin{array}{l}\text { Phase } B \text { input ON } \rightarrow \\ \text { ON while phase A input } \\ \text { OFF while phase A input } \\ \text { ON Count up by 1. }\end{array} \\ \text { ON Count down by 1. }\end{array}$
3) 2 -phase counter [2 edge-count] (K2, K3)

phase A input ON (OFF)
Count up by 1.
4) 2-phase counter [4 edge-count] (K4, K5)
Phase B

down count

$\underset{-2,147,483,648}{\text { Lower limit value }}$
Ring length
) 1 -phase 2 -input counter (K6, K7)

$$
\begin{aligned}
& \text { at OFF } \rightarrow \mathrm{ON}
\end{aligned}
$$

6) 1-phase 1-input counter [Hardware UP/DOWN] (K8, K9) Phase A OFF ON
 OFF
Current
UP value तr ? L
7) 1-phase 1-input counter [Software UP/DOWN] (K10, K11) BFM\#1, \#41 K0 K1

$$
\begin{array}{ccc}
\text { ON } \\
\text { Phase } \mathrm{B} \\
\text { OFF } \\
\text { Current } \\
\text { value }
\end{array}
$$

5.2.2 DOWN/UP command [BFM \#1 (CH1), \#41 (CH2)]

When using the 1-phase 1 -input counter [Software UP/DOWN] (counter mode: K10 K11), set the count direction by the currit value of BFM $\# 1$ or BIM \#41. (Defaul

value: K0) | | \rightarrow For the |
| :--- | :---: |
| Count Direction | Setting Value |
| Up count | K0 |

Down count
5.2.3 Ring length [BFM \#3, \#2 (CH1), \#43, \#42 (CH2)]

When setting the upper limit value of the 16 bit counters, the setting range is K2 to
665336 (Default value: K65536) Please use the DTO instruction and write data as 32 bit data
When ring length K100 is specified, the current value of the counter is changed as

$$
\text { UP } \underset{98}{\sim 1}
$$

Bit No.	Setting Value	
	OFF (0)	ON (1)
bo^{+1}	Count prohibit	Count permit
b12 ${ }^{2}$	YH1 compared output prohibit	YH1 compared output permit
$\mathrm{b}^{2}{ }^{\text {a }}$	YH2 compared output prohibit	YH2 compared output permit
ba^{+4}	YH1/YH2 independent action	Mutual reset action
b4 4^{5}	Preset prohibit	Preset permit
${ }^{6} 5^{* 6}$	No action if PLC is set from RUN to STOP (FX2N-1HC compatibility mode)	Counter is stopped and reset if PLC is set from RUN to STOP
b6, b7	Not used	
b8 8^{7}	No action	Error flag reset
b9 ${ }^{48}$	No action	YH1 output reset
b10*8	No action	YH2 output reset
b11 ${ }^{8}$	No action	YH1 output set
$\mathrm{b12}^{\text {² }}$	No action	YH2 output set
b13 ~ b15		

1 When $\mathrm{b0}$ is set to ON and the DISABLE
permitted to start counting input pulses.
2 Unless b 1 is set to $\mathrm{ON}, \mathrm{YH1}$ (compared output) does not turn ON.
3 Unless b 2 is set to ON , YH 2 (compared output) does not turn ON .
4 When $\mathrm{b} 3=\mathrm{ON}$, YH output is reset if YH 1 output is set, and YH 1 output is reset if do not reset each other. do not reset each other.
The mutual reset action
output and the YH 2 comparison output are permitted (b 1 , b2=ON).
5 When b4=OFF, the preset function using the PRESET input terminal is disabled.
6 When bit 5 is set to ON, the counter will be stopped and reset and the outputs
YH1 and YH2 will be swithed OFF when the PLC is set from RUN to STOP.
7 When bit 8 in BFM \#4 is set to ON, the error flags bit 1 to 6 in BFM \#29 will be
reset. The shared error flags (bit 7 and bit 8) will also be reset if no error on the rese. The shared error flags ((ibi 7 and bit 8) will also be resel if no error on the
other counter channel requires them to remain N. When bit 8 in BFM $\# 44$ is set
ON, the error flags bitt 10 to 15 in $\mathrm{BFM} \# 29$ will be reset. The shared erro flags o ON, the error flags bit 10 to 15 in BFM \#29 will be reset. The shared error flags
bit 7 and bit 8) will also be reset if no error on the other counter channel requires (bit 7 and bit 8) will also be reset if no error on the other counter channel requires
them to ermain O. After clearing $\mathrm{FM} \# 29$ error flags this flag will be reset automatically.
*8 b9 to b12 can perform a forced set of the YH1 output or the YH2 output, and reset.
The output is not changed when the forced set and reset are performed
Thit simultaneously.

5.2.5 Preset data [BFM \#11, \#10 (CH1), \#51, \#50 (CH2)]

When BFM \#4, \#44 b4 is ON and the PRESET input is switched from OFF to ON,
preset data is stored in BFM $\# 21, \# 20$ (CH1) \#61, \#60 (CH2) (counter current value).
5.2.6 YH1 compare value [BFM \#13, \#12 (CH1), \#53, \#52 (CH2)] YH1 compare value [BFM \#133, \#12 (CH1), $\# 53, \# 52$ (CH2)],
YH2 compare value [BFM \#15, \#14 (CH1),, $\# 55, \# 54$ (CH2)]
The comparison set value for the output currently written here and the present value
of the counter are measured, and when the comparison result is equal, the YH1 output or the YH 2 output is set to ON within 30μ s.

Output occurs when the current value becomes equal to the compare value but
only if b 1 and b 2 of $\mathrm{BFM} ~ \# 4$, , $\# 44$ are ON . Once an output is set, it remains ON

fb3 of BFM \#4, \#44 is ON, however, one of the outputs is reset when the other is sel - YH 2 compare value

5.2.7 Counter current value [BFM \#21, \#20 (CH1), \#61, \#60 (CH2)] The current value of the counter can be read by the PLC. It will not be an accurate value during high-speed operations because of the communication delay. The
current value of the counter can be forcibly changed by writing a 32 -bit value into cure appropriate BFMs from the PLC.

These BFM stor the mex value [BFM \#25, \# 24 (CH), \#65, \#64 (CH2)] These BFM store the maximum and minimum value reached by the counter. If the
power is turned off the stored data is cleared. Any value written to maximum power is turned off, the stored data is cleared. Any value written to maximum
and minimum count value in 16 bit counter mode which is exceeding the valid

5.2.9	Compare results [BFM \#26 (CH1), \#66 (CH2)]		
Bit No.	Target output	OFF (0)	ON (1)

5.2.11 Error status [BFM \#29]		
Bit N0.	Error Status	
b0	Set when any of b1 to b15 is ON.	
b1	Set when the value of the ring length is written incorrectly. (CH1)	
b2	Set when the preset value is written incorrectly. (CH1)	Value is other than "K0 to ring length-1" for 16-bit counters.
b3	Set when the compare value is written incorrectly. (CH1)	Value is other than "KO to ring length-1" for 16-bit counters.
b4	Set when the current value is written incorrectly. (CH1)	
b5	Set when the counter overflows the upper limit. (CH1)	When the upper or lower limit is exceeded on a 32-bit counter.
b6	Set when the counter underflows the lower limit. (CH1)	

Bit No．	Error Status					
b7	Set when the FROM／TO command is used incorrectly．${ }^{\text {¹ }}$					
b8	Set when the counter mode（BFM \＃0， \＃40）is written incorrectly．				Except K0 to K11	
b9	Hardware error（UP，DOWN LED turn ON）					
b10	Set when the value of the ring length is written incorrectly．（CH2）				－Outside of K2 to K65，536 －Written while CH2 is in 32－bit counter mode －Ring length changed while counter running	
b11	Set when the preset value is written incorrectly．（CH2）				Value is other than＂KO to ring length－ 1 ＂for 16 －bit counters．	
b12	Set when the compare value is written incorrectly．（CH2）					
b13	Set when the current value is written incorrectly．（CH2）					
b14	Set when the counter overflows the upper limit．（CH2）				When the upper or lower limit is exceeded on a $32-$ bit counter．	
b15	Set when the counter underflows the lower limit．（CH2）					
＊1 In the following case，BFM \＃29 b7 turns on． －write in a BFM that is not used －writing to read only BFMs －accessing 32 bit BFMs using the FROM／TO command in the wrong order						
Error status in the $\mathrm{FX} 3 \mathrm{U}-2 \mathrm{HC}$ can be checked by reading the contents of bO to b15 of BFM \＃29 to auxiliary relays of the PLC． The error flag of b 1 to b 8 is reset－table with ON of $\mathrm{BFM} \# 4 \mathrm{~b} 8$ ．The error flag of b 7 ， b 8 and b 10 to b15 is resettable with ON of BFM \＃44 b8．The error flags in BFM \＃29 can also be reset by writing 0 to it．The Hardware error flag（bit 9 of BFM \＃29） can not be cleared．						tents of b0 to b15 The error flag of b7， error flags in BFM （bit 9 of BFM \＃29） built－in checking C matches that of
6．Example Program						
The ON／OFF status of M10 to M25 is written in BFM \＃4（CH1）of special function block No． 2 by the following program，and b0 to b15 actions．Among these，b0 to b4 are always ON as controlled by M10－M14． Furthermore，b8（M18），b9（M19），and b10（M20）are controlled by input X004 of the PLC，and X005 by ON／OFF．						
M800 \quadRUN Count allowed，YH1／YH2 Output allowed， Mutual reset，Preset allowed						
$\bigcirc \mathrm{M} 18 \mathrm{CH1}$ error flag reset						
FNC 79 TO		K2	K4	10	K1	
Please use the following program as a guide whenever you use the FX3U－2HC unit．Other instructions to read the current value of the counter，status etc．can be added as required．						
$\stackrel{\text { M8002 }}{1}$		$\begin{array}{\|c\|} \hline \text { FNC } 79 \\ \text { TO } \\ \hline \end{array}$	K2	ко	K11	K1
Initial pulse	K 11 is written into BFM \＃0（CH1）of special function block No．2． The counter input is 16 －bit 1 －phase Please use a pulse command for this initialization					
		FNC 79	K2	K2	K1234	K1
	K1234 \rightarrow BFM \＃3，\＃2（CH1）（special function block No．2） The ring length can be specified when a 16 －bit counter is specified．					
		FNC 79	к2	K1	K1	K1
		UP／DOWN direction should be specified for 1－phase 1 －input software determined UP／DOWN counter．				
		FNC 79	K2	K12	K1000	K1
	K1000 \rightarrow BFM\＃13，\＃12（CH1）					
		FNC 79	K2	K14	K900	K1
	K900 \rightarrow BFM \＃15，\＃14（CH1） Set the compare value for YH 2 output （not necessary if only YH 1 output is used）．					

following programs are the examples of error processing．
status in the $\mathrm{FX} 3 \mathrm{U}-\mathrm{HC}$ can be cecked Error status in the $\mathrm{FX} 3 \mathrm{U}-2 \mathrm{HC}$ can be checked by reading the contents of SFM \＃29 to auxiliary relays of the PLC．These error flags are resettable BFM $\# 4$, ，$\# 44$ b8

$\begin{array}{\|cc\|} \text { M8000 } & \\ 78 \\ \text { FROM } \end{array}$	K2	K29	K4M100	K1	
M100					
$\xrightarrow{1}$	Error occurrence（BFM\＃29 b1 to b15 turn on）				
M108					
$\bigcirc 1$	Mode setting error occurrence				
M109					
$Y 12$	Hardware error occurrence				
\longrightarrow M18	Error flag reset				

7．Preliminary checks

1）Check that the I／O wiring and extension cable of the $\mathrm{FX} 3 \mathrm{U}-2 \mathrm{HC}$ are properly 2）The $\operatorname{FX} 3 \mathrm{U}-2 \mathrm{HC}$ occupies 8 points of I／O on the FX 3 U ，FX3UC expansion bus．Th 8 points can be allocated from either inputs or outputs．
5 V DC 245 mA power is supplied from the main or extension power supply units
for the FX3U－2HC．Check that there is no power overload from this and other
3）The counter works correctly only when data such as the counter mode（set with a 3）The counter works correctly only when data such as the counter mode（set with
pulse command），the TO
TO command，the compare value，etc．are appropriately
 reset during start．
Note：
Nouting pulses high
Note： Inputing pulses higher than the maximum frequency may cause miscounting in the M／TO error in the PLC main unit

8．Diagnostics

STARTUP AND MAINTE－ NANCE PRECAUTIONS	\triangle CAUTION
－Do not disassemble or modify the PLC． Doing so may cause fire，equipment failures，or malfunctions． ＊For repair，contact your local Mitsubishi Electric representative， －Do not drop the product or exert strong impact to it． Doing so may damage．	
DISPOSAL PRECAUTIONS	\CAUTION
－Please contact a certi environmentally safe recy	electronic waste disposal company for th and disposal of your device．

STORAGE PRECAUTIONS

\triangle CAUTION
The product is a precision instrument．During transporatition，avoid impacts large｜
than those specified in the general specifications by using dedicated packaging
boxes and boxes and shock－absorbing palettes．Failure to do so may cause failures in the product．After transportation，verify operation of the product and check for
damage of the mounting part etc．
1）The following LEDs on the main panel of the FX3U－2HC may help you to
a）$\Phi \mathrm{A}, \Phi \mathrm{B}$ ：
Goes on／off as $\Phi A, \Phi B$ input turn ON／OFF．It can be checked by rotating the b）UC，DOWN：
c）LRE，DIS ． c）PRE，DIS

The appropriate LED lights up when the PRESET（PRE）terminal or the
DISABLE（DIS）terminal is ON．
d） $\mathrm{YH1}$ ， $\mathrm{YH2}$ ：
You can check the e LED lights up when YH1／YH2 output is turned on．
For by reading the content of BFM \＃29 to the PLC．

电器电子产品有害物质限制使用标识要求」的表示方式
 （15）
 Note．This symbol mark is for China only
 含有有害 6 物质的名称，含有量，含有部品 本产品中所含有的有害 6 物很的名称
 $$
\begin{tabular}{|c|c|c|c|c|c|c|c|} \hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{部件名称}} & & & & 害物质 & & \\ \hline & & \[\begin{array}{|l|} \hline \begin{array}{c} \text { 铅 } \\ (\mathrm{Pb}) \end{array} \end{array} \] & \[\begin{gathered} \hline \text { 采 } \\ \text { (Hg) } \end{gathered} \] & \[\begin{aligned} & \left.\hline \begin{array}{c} \text { 镉 } \\ \text { (Cd) } \end{array}\right) \end{aligned} \] & \[\begin{array}{|c|} \hline \text { 六价铬 } \\ (\mathrm{Cr}(\mathrm{VI})) \end{array} \] & 多溴联苯 （PBB） & 多溴二苯醚 （PBDE） \\ \hline \multirow[t]{2}{*}{\begin{tabular}{l} 可编程 \\ 控制器 \end{tabular}
$$

 \& 外壳 \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc
\hline \& 印刷基板 \& \times \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc

\hline
\end{tabular}

This manual confers no industrial property rights or any rights of any other kind，
nor does it confer any patent licenses．Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights which may
occur as a result of using the contents noted in this manual．

Warranty

Exclusion of loss in opportunity and secondary loss from warranty liability
 （1）Damages caused by any cause found not to be the responsibibity of Mitsubish．
（2）Loss in opportunity，lost profits incurred to the user by Failures of Mitsubishi products （2）Loss in opportunity，lost profits incurred to the user by Failures of Mitsubishi products．
（3）Special damages and secondary damages whetter foreseeable or not，compensation for
 （4）Replacement by the user，maintenance of on－site equipment，start－up test rum
and other tasks．

．For safe use

－This product has been manufactured as a general－purpose part for general industries，and has not been designed or manufactured to
a device or system used in purposes related to human life． －Before using the product for special purposes such as nuclear power，electric power，aerospace，
Mitsubishi IEctric．
－Thi
－This product has been manufactured under strict quality control．However
when installing the product where major accidents or losses could occur if th
product fails，install appropriate backup or failsafe functions in the system．
MITSUBISHI ELECTRIC CORPORATION

本表格依据SJ／T 11364的规定编制。
O ：表示该有害物质在该部件所有均质材料中的含量均在 $\mathrm{GB} / \mathrm{T} 26572$
\times ：表定该有書物质至少在该部件的某一均质仏料中的含量超出 $G B / \mathrm{T}$于中国标准法的参考规格：GB／T15969．2

9．Reference（CH1 System Block Diagram）

Programmable Controller
WELLEC-F

FX3U-2HC		
USER'S MANUAL		

$\underset{\substack{\text { ecessay } \\ \text { Registration }}}{ }$

Safety Precaution (Read these precautions before use)

This manual Classifies the safely

Depending of the circumstances, procedures indicated by \triangle CCAUTION max

Certification of UL, bUL standards

LL, cOL File Number:E55339

2.1.1 DIN Rail Mounting
The product can e mounted on a DIN rail
(DI N46277, $35 m \mathrm{~m}\left(1.38^{\circ}\right)$ width).

1) Fit the upper edge of the DiN rail mounting
groove (fig. A) onto the DIN rail.
2) Press
3) Press the product against the DII rail

- An interval space of 1 to mm (0.04" to
0.08) between each unit is necessary.
2.1.2 Direct Mounting (mounting screw: M4 screw)
The product can be installed directly with scores)

The product can be installed directly with screws.
Refer to the External Dimensions (section 1.4)
pitch information. 2.2 Connection to the PLC
 assigned based on the order in which special function units/blocks are attached to
the main unit
For connection to an FX3UC Series PLC or FX2NC Series PLC extension block, an
 is required. ${ }^{1} 1$ Up to seven special function units/blocks in total can be connected to the FX3UC-32MTT-LT(-2) PLC. Unit numbers assigned to special function units/
blocks begins with No. 1. Up to two special function unitstlocks in total can be connected to the
FX5 or Frsuc PC. . Unit numbers assigned to special function units/
blocks begins with No. blocks begins with No. \qquad

5．Buffer Memories（BFM）

1 Buffer memory List

1）When writing to BFM \＃0（CH1 counter mode），BFM \＃1 to \＃27 and \＃29 biti to
6 will beinitiaized．When writing to BFM $\# 40$（CH2 counter mode），
toM \＃41
 c）Read Writise of 16 bit data
When using a positive value between $K 32,768$ and $K 65,535$ with 16 bit
counters，read／writs of data，such as the current value，ring length，preset
count value should use the 32 －hit forms of FRONIUT and the minimum Count value should
FROM，（D）TO）．
The usage of a a 2 －bit 16 ROM／TO instruction is recommended．
In the event that a 16 －bit F ROM／TO instruction is used，the following cases
need to be considiered．
－It the wrutithg order is low word first and then high word，the 32 bit data will
be written normally．Data becomes valid after both low and high words are
－witten．
In the event that data is not written in the order low word first and then high
word，the error bit 77 of $B F M M 29$ urns oN．

BFM \＃		Description		Default	$\begin{gathered} \mathrm{BFM} \\ \text { Access } \end{gathered}$
CH1	CH2				
BFM \＃0	BFM \＃40	Counter mode （Setting range：K0 to K11）		ко	RW
BFM \＃1	BFM \＃41	DOWN／UP command（1－phase 1－input mode［S／W UP／ DOWN］only）		ко	RW
BFM \＃2	BFM \＃42	Ring length	Lower	K65536	RW
BFM\＃3	BFM \＃43		Upper		RW
BFM \＃4	BFM \＃44	Command		ко	RW
$\underset{\substack{\mathrm{B}-\mathrm{FM} \\ \sim}}{ }$	$\begin{gathered} \text { BFM \#45 } \\ \sim-\# 49 \end{gathered}$	Not used		－	
BFM \＃10	BFM \＃50	Preset data	Lower	ко	RW
BFM \＃11	BFM ${ }^{\text {5 }}$		Upper		RW
BFM \＃12	BFM \＃52	YH1 compare value	Lower	K32767	RW
BFM \＃13	BFM \＃53		Upper		RW
BFM \＃14	BFM \＃54	YH2 compare value	Lower	K32767	RW
BFM \＃15	BFM \＃55		Upper		RW
$\begin{gathered} \substack{\text { BFM \#19 } \\ \sim \# 16} \end{gathered}$	$\begin{array}{\|l\|} \hline \text { BFM \#56 } \\ \sim \# 59 \end{array}$	Not used		－	
BFM \＃20	BFM \＃60	Counter current value	Lower	ко	RW
BFM \＃21	BFM \＃61		Upper		RW
BFM \＃22	BFM \＃62	Maximum count value	Lower	ко	RW
BFM \＃23	BFM \＃63		Upper		RW
BFM \＃24	BFM \＃64	Minimum count value	Lower	ко	RW
BFM \＃25	BFM \＃65		Upper		RW
BFM \＃26	BFM \＃66	Compare results		－	R
BFM \＃27	BFM \＃67	Terminal status		－	R
BFM \＃28		Not used		－	－
BFM \＃29		Error status		－	R
BFM \＃30		Model identification code：K4020		K4020	R
BFM \＃31		Not used		－	－
BFM \＃68	32767	Not used		－	－

． 2 Details of buffer memories

Note：
When witing to BFM \＃0（CH1 counter mode），BFM \＃1 to $\# 27$ and $\# 29$ bit to 6 wil
initialized．When writing to BFM $\# 40$（CH2 counter mode），BFM $\# 41$ to $\# 67$ an 29 bit12 to 15 will be initialized．Please perform the setting of other BFM (s) after When seting the counter mode，use a TOP（pulsed）instruction，or M8002（initid
pulse）to drive the TO instruction．（The continuous operation type cannot be used．）

Count modes		32 bits	16 bits	Reference
2－phase input （phase difference pulse）	1 edge count	ко	K1	1），2）
	2 edge count	к2	к3	3）
	4 edge count	K4	K5	1），4）
1－phase 2－input（add／subtract pulse）		к6	K7	1），5）
$\begin{aligned} & \text { 1-phase } \\ & \text { 1-input } \end{aligned}$	Hardware UPIDOWN	K8	к9	1），6）
	Software UPIDOWN	K10	K11	1），7）
1） $16 / 32$－bit counter modes a）32－bit counter modes Modes：K0，K2，K4，K6，K8，K10 A 32－bit binary counter which executes UP／ limit value to the upper limit value or the upper limit value to the lower limit value when overflow occurs．Both the upper and limit value is $+2,147,483,647$ ，and the lower limit value is $-2,147,483,648$ ．				
b） 16 －bit count Modes：K1， values from from the up limit value lin \＃3 and \＃2（C	modes $3, \mathrm{~K} 5, \mathrm{~K} 7, \mathrm{~K} 9, \mathrm{~K} 11$ counter handles only p to 65,535 ．Changes t er limit value or to the mero when overflow $\mathrm{H} 1)$ ，\＃43 and \＃42（CH2）．		$\begin{aligned} & \text { g9 legth } \\ & 11:(B F M \# \# \\ & 12:(B F M \# \end{aligned}$	$\stackrel{\downarrow}{\downarrow}$
2） 2 －phase counter［1 edge－count］（K0，K1）				
Phase B input OFF \rightarrow ON while phase A input ON Count up by 1. Phase B input ON \rightarrow FFF while phase A input ON Count down by 1.				
3） 2 －phase counter［2 edge－count］（K2，K3）				
Phase B input OFF \rightarrow Phase B input $O N \rightarrow$ ON（ON \rightarrow OFF）Mhilephase A input ON（OFF）phase A input ON（OFF） Count up by 1 ． Count down by 1.				
4） 2 －phase counter［4 edge－count］（K4，K5）				
5） 1 －phase 2 －nput counter（ $6, \mathrm{~K} 7$ ）				
$\text { Phase A }_{\substack{\text { ON } \\ \text { OFF }}}^{\text {OF }}$				
6）1－phase 1－input counter［Hardware UP／DOWN］（K8，K9）				
Phase A OFF ON				
7）1－phase 1－input counter［Software UP／DOwN］（K10，K11）				
BFM\＃1，\＃41 K0 K1				
			UP／DOWN is determined by the contents of BFM \＃1，\＃41（K0／K1）	

5．2．2 Down／UP command［BFM \＃1（CH1）\＃41（CH2）

Setting Value		
Up count	к0	
Down count	K1	
BFM \＃3，\＃2（CH1），\＃43，\＃42（CH2）		
When setting the upper limit value of the 16 bit counters，the setting range is K2 to K65536．（Default value：K65536） Please use the DTO instruction and write data as 32 bit data．		
When ring length K100 is specified，the current value of the counter is changed asshown the following figure，and the upper limit value is set to 99.		
UP ㄱAR	$\xrightarrow[0]{2}$ Down	
5．2．4 Command［BFM \＃4（CH1），\＃44（CH2）］		
Bit No．	Setting Value	
	OFF（0）	
b0＂1	Count prohibit	Count permit
b12	compared output proh	41 compared output p
$\mathrm{b}^{2}{ }^{\text {a }}$	compared output prohibit	H2 compared output P
$\mathrm{b3}^{3} 4$	NH2 independent	Mutual reset action
b4＊${ }^{\text {a }}$	Preset prohibit	Preset perm
${ }^{65}{ }^{6}$	ion if PLC is set from RUN to STOP －1 1 HC compatibility mode）	Counter is stopped and reset if PLC is set from RUN to STOP
b6，b7	Not used	
$\mathrm{b8}^{87}$	No action	Error flag reset
$\mathrm{b9}^{\circ}{ }^{8}$	No action	YH1 output reset
b10 ${ }^{\text {8 }}$	No action	YH2
b1118	No action	H1 output se
b12 ${ }^{\text {\％}}$	No action	YH2
b13～b15	Not used	
＊1 When b0 is set to ON and the DISABLE input terminal to OFF，the counter is permitted to start counting input pulses．		
＊2 Unless b1 is set to $\mathrm{ON}, \mathrm{YH} 1$（compared output）does not turn ON ． ＊3 Unless b2 is set to ON YH2（compared output）does not turn ON．		
＊4 When b3＝ON，YH2 output is reset if YH1 output is set，and YH1 output is reset if YH2 output is set．When b3＝OFF，YH1 and YH2 output act independently，and do not reset each other The mutual resel action becomes valid only when both the YH1 comparison output and the YH 2 comparison output are permitted（b1，b2＝ON）．		
＊5 When b4＝OFF，the preset function using the PRESET input terminal is disabled．		
＊6 When bit 5 is set to ON，the counter will be stopped and reset and the outputs YH1 and YH2 will be switched OFF when the PLC is set from RUN to STOP．		
＊7 When bit 8 in BFM \＃4 is set to ON，the error flags bit 1 to 6 in BFM \＃29 will be reset．The shared error flags（bit 7 and bit 8 ）will also be reset if no error on the other counter channel requires them to remain ON．When bit 8 in BFM \＃44 is set to ON ，the error flags bit 10 to 15 in $\mathrm{BFM} \# 29$ will be reset．The shared error flags （bit 7 and bit 8 ）will also be reset if no error on te one counter clag will be resetthem to remain ON．After clearing BFM \＃29 error flags this flag automatically．		
＊8 b9 to b12 can perform a forced set of the YH1 output or the YH2 output，and reset． The output is not changed when the forced set and reset are performed simultaneously		
5．2．5 Preset data［BFM \＃11，\＃10（CH1），\＃51，\＃50（CH2）］ When BFM \＃4，\＃44 b4 is ON and the PRESET input is switched from OFF to ON， preset data is stored in BFM \＃21，\＃20（CH1）\＃61，\＃60（CH2）（counter current value）．		
5．2．6 YH1 compare value［BFM \＃13，\＃12（CH1），\＃53，\＃52（CH2）］， YH2 compare value［BFM \＃15，\＃14（CH1），\＃55，\＃54（CH2）］		
－The comparison set value for the output currently written here and the present value of the counter are measured，and when the comparison result is equal，the YH 1 output or the YH 2 output is set to ON within $30 \mu \mathrm{~s}$ ．		

5．2．7 Counter current value［BFM \＃21，\＃20（CH1），\＃61，\＃60（CH2）］ The current value of the eoculter cara be read by the PLC．It will not be an accurate
value during high－speed onerations because of the communication delay．The

 These BFM store the maximum and minimum value reached by the counter．If the
 5．2．9 Compare results［BFM \＃26（CH1），\＃66（CH2）］

5．2．11 Error status［BFM \＃29］		
Bit No．	Error Status	
b0	Set when any of b1 to b15 is ON．	
${ }^{6} 1$	Set when the value of the ring length is written incorrectly．（CH1）	$\begin{aligned} & \text { - Outside of K2 to K65,536 } \\ & \text { - Write while CH1 is in } \\ & \text { 32-bit counter mode } \\ & - \text { Ring length chaned } \\ & \text { while counter running } \end{aligned}$
b2	Set when the preset value is written incorrectly．（CH1）	Value is other than＂K0 to ring length－ 1 ＂for 16 －bit counters．
b3	Set when the compare value is written incorrectly．（CH1）	Value is other than＂K0 to ring length－1＂for 16 －bit counters．
${ }^{6} 4$	Set when the current value is written incorrectly．（CH1）	
b5	Set when the counter overflows the upper limit．（CH1）	When the upper or lower limit is exceeded on a 32－bit counter．
${ }^{6} 6$	Set when the counter underflows the lower limit．（CH1）	

 a）Φ A，Φ B：
Goes on／
Gees onloff as $\Phi A, \Phi B$ input turn ON／OFF．It can be checked by rotating the
encoder slowll
Lights up to indicate whether the counter is going up（UP）or down（DOWN）．
PRE，DIS： The，appropriate LED lights up when the PRESET（PRE）terminal or the
DIABLE（IS）terminal is ON． The appropriate LED lights up when YH1 1 YH2 output is turned on．
2）You can check the error status by reading the content of B FM $\# 2$ to the PLC

电器电子产品有害物质限制使用标识要求」的表示方式 （15）

含有有害 6 物质的名称，含有量，含有部品

产品中有害物质的名称及含量							
部件名称		有害物质					
		$\begin{array}{\|l\|} \hline \begin{array}{l} \text { 铅 } \\ (\mathrm{Pb}) \end{array} \end{array}$	$\begin{array}{\|c\|} \hline \text { 永 } \\ (\mathrm{Hg}) \end{array}$		$\begin{array}{\|l\|} \hline \text { 六价铬 } \\ (\operatorname{Cr}(\mathrm{VI})) \end{array}$	$\begin{gathered} \hline \text { 多溴联苯 } \\ \text { (PBB) } \end{gathered}$	$\begin{gathered} \text { 多溴二苯醚 } \\ \text { (PBBE) } \end{gathered}$
可编程	外壳	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
控制器	印刷基板	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

表依倨J／1364的规定编制
：表示该有害物质在该部件所有均质材料中的含量均在 $\mathrm{GB} / \mathrm{T} 26572$ ：表定该有書要物疗以至少在该部件的某一均质材料中的含量超出 $G B / \mathrm{T}$ 26572 规定的限量要求
于中国标准法的参考规格： $\mathrm{GB} / \mathrm{T} 15969$ ．
9．Reference（CH1 System Block Diagram）

This manual confers no industrial property rights or any rights of any other kind，
nor does it

held
esesponsible for any occur as a result of using the contents noted in this manual．
Warranty
 （1）Damages caused by any cause found not to be the eresponsibibity of Mitsubishi
（2）Loss in opportunity，lost profits incured to the user by Faiures of Mits （3）Special damagaes and secondardy damageges whether foreseseaduble or or ont．compensation for accidents，and compensation for damagesesto productst othert than Mitisubispi ropoucts．
（4）Replacement by the user，maintenance of on－site equipment，start－up test run

\．For safe use

This product has been manufuctured as a general－purpose part for general
industries，and has not been designed or manufactured to be incorporated in industries，and has not been designed or manuuatured to
a device or system used in purposeses related to human life．
Before using the product for special purposess such an nuclear power，electric
power aerospace，medicie or passenger movement vehicles，consult with
Mower，arospace，
Mithubshi Ilectric．
－This poroduct has bee
This product has been manufactured under strict quality control．However
when installing the product where major accidents or losses could occur if the
MITSUBISHI ELECTRIC CORPORATION

