F	ATE	
	F	Bs-1HLC
	半書巧	² 荷青 二 描 纪
	TFD	의민重기미天교 소 때
	記明	
	V1.1	06/07/2017
	永宏電	機股份有限公司

内容

第一章	1HLC 模組介紹	3
1.1	1 模組規格:	3
1.2	2 模組外觀與說明	4
1.3	3 應用接線	4
1.4	4 1HLC 與 PLC 的溝通介面	6
1.5	5 1HLC 的應用介面	6
1.5	5.1 應用介面內容與 modbus 對應表	6
1.5	5.2 詳細內容說明	7
第二章	應用範例	8
2.1	1 應用接線	8
2.2	2 PLC 通訊參數設定	8
2.3	3 階梯程式撰寫	9
2.4	4 1HLC 模組校正	10
2.4	I.1 零點校正	10
2.4	I.2 滿刻度校正	10
2.4	1.3 重量量測	10

第一章 1HLC 模組介紹

Load Cell 是以應力應變片貼在金屬彈性體上,當金屬彈性體受到壓力或拉力時,來感應彈性體的變形量, 將其轉換成電壓的輸出信號,PLC 透過 modbus 通訊協定取得 1HLC 的資料。

1.1 模組規格:

一般規格				
供給電源	DC24V			
重量	127 公克			
操作溫度	-10°C to + 40°C (+14°F to + 104°F)			
操作濕度	85%相對濕度(無凝結水滴狀態)			
機構尺寸	90 (L) x 40 (W) x 80 (H) mm			
輸入信號及 A/D 轉換				
解析能力	16bit			
A/D 轉換速度	100 次/sec			
荷重元激勵電源	DC 5V ±5% , 120mA (可 接 8 個 350 Ω 荷 重 元)			
最大測量電壓	-1mV ~ 39mV			
輸入靈敏度/解析度	0.15μV/D 以上1/60000 d			
數字部份				
狀態指示	POWER · MD · ZERO · NET · GROSS			
記憶體	校正參數及功能設定均儲存至 EEPROM			
特點介紹				
1.工業等級的重量控制設	計,適用於各種惡劣的工業環境			
2.抗雜訊干擾能力強,有效抑制電源,電磁波及無線射頻的干擾				
3.體積小,不占空間,方	F便收納於控制機台內,高精度,性能佳			
4.可調式的數位濾波,可	「有效的抑制現場環境所產生之振動			
5.靈活的校正方式及自動	加穩定偵測			
6.自動零點追蹤,有效抑制	前荷重元所產生的零點飄移			

1.2 模組外觀與說明

EXC:荷重元激勵電源 (DC 5V ±5%)

1.3 應用接線

四線式接線

多顆 Load Cell 接線

1.4 1HLC 與 PLC 的溝通介面:

PLC 透過 modbus 通訊協定取得 1HLC 的資料。

利用 Winproladder 連線到 PLC,然後修改 Winproladder 的 PORT3 通訊參數,1HLC 的通訊參數固定 為以下的內容。

PORT	通訊速率	同位檢查	數據位元數	停止位數	格式
Port3	19200	無	8	1	RTU

1.5 1HLC 的應用介面:

1.5.1 應用介面內容與 modbus 對應表

狀態/控制位元

位置	名稱	長度	讀/寫
000002	超載旗標	Bit	R
000005	顯示毛重值旗標	Bit	R
000006	顯示淨重值旗標	Bit	R
000007	零點旗標	Bit	R
800000	不穩定旗標	Bit	R
000257	歸零	Bit	W
000258	扣重	Bit	W
000263	清除扣重	Bit	W
000513	零點校正輸入	Bit	W
000514	滿刻度校正輸入	Bit	W
000773	save EEP	Bit	W

位置	名稱	設定值	長度	讀/寫
402305	AD 內部值		Word	R
402307	顯示值		2Word	R
402567	SPAN 校正重量值		2Word	R/W
402561	最大秤量		2Word	R/W
401793	校正錯誤訊息	0~3	Word	R/W
402049	AD 取樣頻率	0=100 、1=50 、2=25 、3=12.5 、4=6.25Hz	Word	R/W
402052	最小刻度	1,2,5,10,20,50	Word	R/W

1.5.2 詳細內容說明

狀態/控制位元

位置	名稱	說明
000002	超載旗標	當量測物重量大於最大秤量值時,則此旗標會 ON。
000005	毛重值旗標	目前量測的顯示值有包含物件包裝的重量
000006	淨重值旗標	目前量測的顯示值為物件實際重量
000007	零點旗標	當(=1)時,毛重重量等於0
800000	不穩定旗標	在給定條件下,保持示值穩定的裝置,可藉由不穩定追蹤時間及不穩定追蹤範圍來制定 條件
000257	歸零	當(=1)時,承載器上無載荷時,將顯示值置於或調至零的功能
000258	扣重	當(=1)時,將載重在秤盤上的包裝重量扣除
000263	清除扣重	當(=1)時,將包裝重量扣除之數值清除,及顯示毛重值
000513	零點校正輸入	在校正時(=1),所要設定之零點按鍵
000514	滿刻度校正輸入	在校正時(=1),所要設定之 SPAN 重量按鍵!(須先設定 SPAN 校正重量值)
000773	save EEP	當(=1)時,將設定資料儲存於 EEPROM,當開機時會自動讀取上次儲存的設定值。

狀態/設定暫存器

位置	名稱	說明
402305	AD 內部值	磅秤類比訊號電壓大小轉換為磅秤內部運算用之數值。
402307	顯示值	透過規格校正,重量校正後所實際量測到的重量值。
402567	SPAN 校正重量值	當校正中已知法碼之重量值。
402561	最大秤量	設定量測最大秤量,當超過最大秤量時,則會顯示超載旗標。

		0:正常
		1 : AD 異常
401793	校正錯誤訊息	2:重量校正點於前一個校正點(例如:SPAN1 <zero)< th=""></zero)<>
		3:重量校正精度高於 0.1uV/D

第二章 應用範例

2.1 應用接線

首先將硬體配線配置完成,請參考下面硬體設備與配線方式。 硬體:FBs-24MC*1、FBs-1HLC*1、磅秤*1 1. 將 1HLC 排線接到 PLC 的左側(通訊)擴充插槽。 2. 磅秤的 4 條線接到 1HLC 的 EXC+、EXC-、SIG+、SIG-。

2.2 PLC 通訊參數設定

利用 Winproladder 連線到 PLC(本範例是 24MC),然後修改 Winproladder 的 PORT3 通訊參數,1HLC 的通訊參數固定為以下的內容。

PORT	通訊速率	同位檢查	數據位元數	停止位數	格式
Port3	19200	無	8	1	RTU

2.3 階梯程式撰寫

1.在 Winproladder 階梯圖中建立一個 FUN150,利用 FUN150 Modbus 與 1HLC 進行資料傳輸。 利用 X0 控制 M102、X1 控制 M103,因為根據步驟 2 的 ModBus Master 表格中 M102 是零點校正 控制 線圈(000513)、M103 是滿刻度(SPAN)校正控制線圈(000514)。

2. ModBus Master 表格中,要設定讀取或寫入的暫存器編號,僕站資料的暫存器編號請參考【1.5.1 應用介面內容與 modbus 對應表】。

〔訊命令 爭動	<u>}</u> │	僅站	主站资料	1	催站資料	長度		新博
- 367	讀取(Read)	1	R500	~	402307	2		利咱
	單個寫入(write)	ĩ	M100	->	000257	ī		
	單個寫入(write)	1	M101	->	000258	1		插入
	單個寫入(write)	1	M102	->	000513	1	<u></u>	
	單個寫入(write)	1	M103	->	000514	1		10.00
	單個寫入(write)	1	M104	->	000263	1		編輯
	讀取(Read)	1	M105	<-	000005	1	_	
	讀取(Read)	1	M106	<-	000006	1		1000 BA
	讀取(Read)	1	M107	<-	000007	1		1003832
	讀取(Read)	1	M108	<-	000008	1		
	寫入(write)	1	R502	->	402561	2		上新 客
	寫入(write)	1	R504	->	402567	2		112
	讀取(Read)	1	R506	<-	401793	1	27	
	讀取(Read)	1	R308	<-	402305	2		下移
定: 動態	配置[2840]字組	資料長度:101	宇組配	置位置:R	1000-R1100			

2.4 1HLC 模組校正

進行模組校正能讓後面量測出來的值能更為精準,校正步驟中的暫存器與接點都已經透過 2.3 章節的步驟 2【ModBus Master 表格】中進行轉換,詳細暫存器對應請參考此章節。

2.4.1 零點校正

請確認秤臺上或桶秤內,無任何物品,執行零點校正輸入(X0 由 0 變 1),如果成功會看到顯示值暫存器 DR500(Modbus 暫存器 402307)會等於零,沒有為零請檢查零點校正動 作是否正確。然後把零點 校正的 X0 將狀態變回 0,不然量測重量時顯示值會一直等於 0。

2.4.2 滿刻度校正

將已知重量之物品(法碼),置於秤臺上或桶秤內,先將已知重量之物品的重量值輸入到 SPAN 校正重量 值內暫存器 DR504(Modbus 暫存器 402567),等待顯示值穩定後,執行 SPAN 校正輸入(X1 由0變 1), 這時候顯示值暫存器 DR500(Modbus 暫存器 402307)會跟暫存器 DR504(Modbus 暫存器 402567)的值 相同,然後將 X1 由 1變為 0,再取下已知重量之物品(法碼)後,即可開始量測物品。

注意: 暫存器 DR504(Modbus 暫存器 402567)如果等於零,則量測重量時,顯示值暫存器 DR500(Modbus 暫存器 402307)會一直為零。

2.4.3 重量量測

將物品放置在秤臺上,顯示值暫存器 DR500(Modbus 暫存器 402307)會根據滿刻度校正的已知重量值的標準去顯示物品的重量。